Chess, Artificial Intelligence, and Epistemic Opacity

Grünke Paul

Absztrakt / abstract


In 2017 AlphaZero, a neural network-based chess engine shook the chess world by convincingly beating Stockfish, the highest rated chess engine. In this paper, I describe the technical differences between the two chess engines and based on that discuss the impact of the modeling choices on the respective epistemic opacities. I argue that the success of AlphaZero’s approach with neural networks and reinforcement learning is counterbalanced by an increase in epistemic opacity of the resulting model.

Kulcsszavak


Opacity; Machine Learning; Modeling; Chess

Teljes szöveg:

PDF (English)


DOI: http://dx.doi.org/10.22503/inftars.XIX.2019.4.1

Copyright (c) 2020 Információs Társadalom

Creative Commons License
Ez a mű a Creative Commons Nevezd meg! - Ne add el! - Így add tovább! 4.0 Nemzetközi Licenc feltételeinek megfelelően használható fel.